光操控反铁磁材料实现磁态转换,有助设计更快、更小、更节能的内存芯片
反铁磁材料在信息处理与内存芯片技术领域具有广泛应用前景。光操更快更小更节据最新一期《自然》杂志,控反美国麻省理工学院科研团队仅使用光就在反铁磁材料中实现了磁态转换,铁磁创造出一种新型且持久的材料磁态磁态。这一技术为研究人员提供了控制磁性的实现设计强大工具,有助于设计更快、转换更小、有助更节能的内存内存芯片。 反铁磁体由自旋方向交替的芯片原子组成,每个原子的光操更快更小更节自旋方向都与其相邻原子的自旋方向相反。这种上、控反下、铁磁上、材料磁态下的实现设计顺序基本抵消了自旋,使反铁磁体总磁化强度为零,转换从而不受任何磁力影响。 如果能用反铁磁材料制成内存芯片,就可将数据“写入”材料的微观区域,即磁畴。在给定磁畴中,自旋方向的某种配置(例如,上—下)代表经典的比特“0”,而另一种配置(下—上)则代表“1”。在这样的芯片上写入数据,能抵御外部磁场的干扰。 由于磁畴的稳定性,反铁磁体可整合到未来的内存芯片中,使这些芯片能耗更少、占用空间更小,同时存储和处理的数据更多。然而,将反铁磁材料应用于存储技术的一个主要障碍在于,如何以可靠方式控制反铁磁体,使其从一种磁态转换到另一种磁态。 此次,团队使用太赫兹激光器直接刺激反铁磁材料中的原子。激光器的振荡频率被调至与材料原子间的自然振动相匹配,从而改变原子自旋的平衡,使其向一种新的磁态转变。 所用材料为FePS3——一种在临界温度(约118K)时转变为反铁磁相的材料。他们将合成的FePS3样品置于真空室中,冷却至118K及以下温度。然后,他们让一束近红外光穿过有机晶体,将光转换为太赫兹频率,从而产生太赫兹脉冲。之后,他们将这束太赫兹光对准样品。 在多次重复实验中,团队观察到,太赫兹脉冲成功地将原本为反铁磁性的材料切换到了一个新的磁态。这一转变出乎意料地持久,甚至在激光关闭后仍能持续数毫秒。 总编辑圈点: 与传统磁性材料相比,新型磁性材料往往具备更卓越的磁性能,如更高的磁导率、更低的损耗等。它们为电子元器件领域注入了新的活力与无限可能。例如,我们的手机变焦镜头通过微型电机来运转,这种电机里就有数颗米粒大小的稀土永磁材料。在磁存储领域,上述研究中的反铁磁材料则有望改善存储芯片的设计。不断涌现的新型磁性材料,正推动电子元器件朝更小尺寸、更高性能、更低功耗方向升级,为各类电子设备持续迭代提供重要支撑。
-
上一篇
-
下一篇
- 最近发表
- 随机阅读
-
- “神秘买家”网上点单 厦门网红店45批次食品抽检全合格
- 杨如松调研我县电子商务产业发展情况
- 陈良平来我县督查“脱贫攻坚、关工助力”工作
- 杨如松督查长江枞阳段固废污染源排查整治工作
- 发布违法广告 广州长安医院被罚16万元
- 枞阳:“四个覆盖”保障村级换届
- 程双林来我县督查饮用水源地环境保护工作
- 他为社会注入巨大正能量
- 精彩回顾丨《安徽省实验室质量控制与环境监测技术交流会》圆满落幕!
- 他为社会注入巨大正能量
- 敲警钟!对“谢师宴”“升学宴”坚决不约
- 枞阳县2018年普通高中招生录取工作圆满结束
- “盯”“防”并举 北京通州强化进口冷链食品监管
- 吴劲来枞调研督查村和社区“两委”换届工作
- 补送党课到门前 走访慰问暖人心
- 我县启动党费管理“云平台”建设试点工作
- 安徽一批交通项目建设迎来新进展_
- 省发改委在我县召开南片七市上半年经济形势调研会
- 池州大桥主桥高度突破200米
- 争当新时代立政德的领头雁
构筑良好政治生态开创枞阳美好未来
- 搜索
-
- 友情链接
-