现代生物技术在动物源性食品抗生素残留检测中的应用进展(三)
2生物传感器方法 生物传感器分析法(BiosensorAnalysis)是现代以固定化生物活性物质(如酶、蛋白质、生物食品素残微生物、技术DNA及生物膜等)为敏感元件,动物并与适当的源性用进物理或化学换能器结合制成的一种分析检测装置进行分析检测的方法。1962年,抗生Clark以离子选择性电极为基础发展了具有酶分子识别功能的留检酶电极。1967年,测中Updike和Hicks首次将葡萄糖氧化酶(GO)固定在Clark氧电极表面,现代成功制备了葡萄糖传感器,生物食品素残从而揭开了有机物无试剂分析的技术序幕。继之又出现了微生物传感器、动物免疫传感器、源性用进细胞传感器和组织切片传感器。抗生20世纪70年代末至80年代,留检又出现了热敏电阻型和生物化学发光式生物传感器。这些生物传感器的出现改变了传统破坏试样的生化检验方法,而且可直接分析、反复使用,便于操作。日前已经发展到活体内测定、多指标测定以及联机在线测定。检测对象也已涉及近百种常见的生物化学物质,使许多过去极难进行的检测变得容易,因而在医学基础研究、临床诊断、环境医学以及发酵、食品、化工和环保等方面得到广泛的应用。 2.1酶传感器 酶传感器是发展最早,也是目前最成熟的一类生物传感器。它是在固定化酶的催化作用下,生物分子发生化学变化后,通过换能器记录变化从而间接测定出待测物浓度。目前国际上已研制成功的酶传感器有20余种,其中最成熟的是葡萄糖传感器。使用时将酶电极浸入到样品溶液中,溶液中的葡萄糖即扩散到酶膜上,在固定于酶膜上的葡萄糖氧化酶作用下生成葡萄糖酸,同时消耗氧气,通过氧电极测定溶液中氧浓度的变化,推测出样品中葡萄糖的浓度。MerolaGiovanni等开发了以过氧化氢的安培电极作为传感器、过氧化物酶作为标记物的酶传感器。结果证明了该酶传感器方法的完全有效性,LOD约为10-10mol/L。罗瑞平[48]合成了金属改性介孔碳材料,并基于青霉素酶(PenX)设计了2种生物传感器:PenX-COOH-Co@C/PMB/GCE和PenX-COOH-CoS2@C/PMB/GCE生物传感器、基于新德里金属-β-内酰胺酶-1(NDM-1)设计了1种生物传感器:NDM-1/PMB/GCE传感器;其中PenX-COOH-Co@C/PMB/GCE和PenX-COOH-CoS2@C/PMB/GCE生物传感器对青霉素钠(PenG)的检测限分别为0.64和0.61ng/mL,NDM-1/PMB/GCE传感器对氨苄青霉素钠(AMP)的检测限为0.35ng/mL,所制备的三种酶传感器灵敏度高、检测限低。 2.2电化学生物传感器 电化学生物传感器是将电化学传感器与生物分子特异性识别相结合的一种生物传感装置。它是一种将生物体成分(酶、抗原、抗体、激素等)或生物体本身(细胞细胞器、组织等)作为敏感元件,电极(固体电极、离子选择性电极、气敏电极等)作为转换元件,以电势或电流为特征检测信号的传感器。傅迎春等以制备的氯霉素DNA适配体修饰的磁珠以及一段与适配体互补的DNA链修饰的金电极制成了电化学生物传感器,该传感器检测氯零素的线性范覆盖3个数量级,检测限低至1ng/mL,与常规方法相当或更优。此外,传感器具有满意的特异性、稳定性,用于牛奶样品检测效果满意。Mohammad-Razdari[52]等在铅笔石墨电极(PGE)上制造了基于电化学适体的生物传感器。在最佳实验条件下,显示出从10-15到10-5mol/L的宽线性范围,对SDM的检测极限(LOD)为3.7×10-16mol/L。此外,它具有很高的重现性,良好的选择性和可接受的稳定性。SuiChengji[53]等使用石墨状氮化碳(g-C3N4)纳米片作为光敏材料,结合捕获-释放策略,制备了一种简单而选择性的光电化学生物传感器。所开发的方法显示出从1pmol/L到100nmol/L的宽线性范围和0.22pmol/L(3sigma)的低检测限。制成的光电化学生物传感器还具有良好的检测特异性,可用于检测水样中的氯霉素残留,回收率在94.5%至107.3%之间。 2.3细胞传感器 细胞传感器的分子识别元件采用动植物活细胞,并结合传感器和理化换能器,产生间断或连续的光电信号。某些动植物活细胞内还有对目标分析物具有诱导效应的基因,因此可用来制作活体细胞传感器,当目标分析物进入活体细胞中时,这些基因发生诱导效应,其可以被目标分析物激活或抑制,此过程被传感器捕捉并转化为光电信号,根据该细胞中基因对不同抗生素的诱导效应可测量多种目标分析物,其原理是采用DNA重组技术重构细胞并用于抗生素残留检测,细胞传感器可分为组成型和诱导型两种。ChengGuyue等构建了转基因细菌,带有质粒pRecAlux3的大肠杆菌pK12,以开发基于生物发光细菌的检测动物源性食品中氟喹诺酮类(FQN)的方法。该方法可用于牛奶等11种可食用组织中FQN的检测。FQN的检出限在12.5至100μg/kg之间,均低于最大残留限量。 2.4免疫传感器 免疫传感器是将高灵敏的传感器技术与特异性免疫反应相结合的一种新方法,用于检测和监控抗原抗体之间的反应。免疫传感器是把抗原或抗体固定在固相支持物表面形成感应器,检测样品中的抗体或抗原,然后将感应的信号通过精密换能器输出,是一种既有选择性又能定量检测的固相免疫测试法。RebeRaz等开发了基于成像表面等离振子共振(iSPR)平台的微阵列免疫传感器,用于定量和同时免疫检测牛奶中的不同抗生素残留。使用单个传感器芯片同时检测了四大类共7种抗生素。通过竞争形式对7种免疫测定进行多重分析,我们能够在缓冲液和10倍稀释牛奶中测得十亿分之一(ppb)水平的所有目标化合物。 2.5微生物传感器 微生物传感器的研究始于1977年Rechnitz用粪便链球菌制成测精氨酸的传感器,而现在已有各种各样的微生物传感器用于临床诊断、食品检测、发酵监控和产物分析、环境质量监测等。微生物的多样性、特异性是发展检测各种物质和多种功能的众多传感器的理论基础,而且相对于其他生物传感器,微生物传感器制作较容易,活性较稳定,使用寿命长[62]。KumarSanjay[63]建立了一种基于绿脓杆菌的用于检测头孢菌素类抗生素的电位型微生物传感器;初步结果表明,铜绿假单胞菌细胞经溶菌酶处理后,在0.1~11mmol/L的浓度范围内对头孢菌素的检测效率高于正常细胞;最佳参数值:细胞含量2.5mg/cm2,明胶8.5mg/cm2,戊二醛0.25%。以磷酸盐缓冲液pH、离子强度和温度为检测条件,优化了生物传感器的检测性能;对不同内酰胺类抗生素的特异性检测,发现该微生物传感器仅对头孢菌素有较好的响应,且该微生物传感器存储及检测具有高稳定性,在检测头孢菌素类药物方面具有良好的应用前景。 3生物芯片技术 1991年,Fodor等首先提出DNA芯片(DNAchip)和微阵列(microarray)的概念。生物芯片(Biochip)技术是20世纪90年代初伴随着人类基因组计划的实施而产生的一门新技术,已成为高效、大规模获取相关信息的重要手段。它主要通过微加工和微电子技术在固相基质表面构建微型生物化学分析系统,以实现对细胞、蛋白质、核酸以及其他生物分子等进行准确、快速、高通量检测。目前,生物芯片技术已广泛应用于基因序列分析、疾病诊断、药物研究、微生物检测、农林业生产、食品、环境保护和检测等领域。Gaudin等使用专用于六个不同抗生素残留物筛查的MicroArrayII试剂盒(AMII)评估了一个多阵列系统,称为Evidence Investigator™(Randox,Crumlin,Co.,英国安特里姆,英国),这是一种半自动化生物芯片系统,设计用于研究、临床应用和兽医使用,实验证明该多阵列生物芯片系统特异性非常令人满意;验证了六个抗生素残基的检测能力均低于欧盟参考实验室(EU-RL)于2007年发布的参考方法所能测定的最低浓度,AMII试剂盒可以检测至少六个喹诺酮类,四个四环素和三个差向异构体,三个氨基糖苷类,三个大环内酯类,甲砜霉素,氟苯尼考和头孢噻呋以及一种稳定的代谢产物二呋喃基头孢呋喃半胱氨酸二硫化物(DCCD)。 4展望 得益于现代生物技术的迅速发展且动物源性食品本身就来源于动物体,利用某些生物材料(如酶、抗体、组织、细胞等)对抗生素物质具有的特异性识别能力或灵敏响应能力检测抗生素残留,是近年来动物源性食品中抗生素检测研究的热点之一。 在免疫分析的诸方法中,放射免疫分析由于具有准确、灵敏的特点,至今使用仍较多。但放射性污染的弊端也是同样明显的。酶联免疫分析是最先提出的非放射免疫方法,并在进入20世纪80年代后首次占据主导地位,且将在今后比较长的一段时间内仍占主导地位,特别是在应用方面更将是如此。化学和生物发光免疫分析法,由于其高灵敏度和测定简便的特点使其在免疫分析中始终占有一定的位置。自动化、大众化、与其他技术的联用是免疫分析的重要发展方向。 相对于物理、化学传感器,所有生物传感器,易受环境条件的影响,不够稳定,敏感元件使用寿命短,要经常更换固定化生物膜。生物传感器发展中的问题着微电子、分子生物学、计算机和材料等科学技术的发展,多种学科技术的相互交叉应用的推进,将会顺利解决,而且将会有更多更好的各种用途的生物传感器出现。未来生物传感器将更趋向微型化、集成化、智能化。未来的生物传感器将集合体积小、功能强、响应快、灵敏度高、选择性好等特点,成为一种广泛应用的高科技生物分析技术。 基因芯片技术不过短短几年时间,其发展势头非常迅猛,在生命科学的各个领域得到普遍应用,但其存在的缺陷也显而易见。首先是资本的问题,由于芯片制作的工艺庞大,信号检测也需专门的仪器配置,普通实验室难以负担其高昂的用度;其次在芯片实验技术上尚有多个问题需要解决,如探针合成等。 声明:本文所用图片、文字来源《中国食品添加剂》,版权归原作者所有。如涉及作品内容、版权等问题,请与本网联系删除 相关链接:抗生素,蛋白质,氯霉素
- 最近发表
- 随机阅读
-
- 横穿马路被撞 人车共同担责
- 猪心脏成功植入人体
- 中欧班列催生物流与商业衔接新业态
- 「新品速递」食品安全威胁之真菌毒素
- 喜报丨热烈祝贺伟业计量成为信阳市环境监测标准物质重点实验室的依托单位
- 福建程信科技有限公司召回20件儿童卫衣
- 居酒屋兵法全攻略(上):居酒屋是一邊沈澱心靈,一邊品飲人生的地方
- 還沒完!義大利麵風波後 田馥甄歌曲「離島」遭中國音樂平台下架
- 2024国考明起开始报名,共计划招录3.96万人
- 关于食品微生物检测问题的分析
- 淮南启动“乡村旅游后备箱工程”行动
- 北京群众期待走上全运赛场
- 广东发布疫情防控相关行业系列专利导航成果
- 华中师范大学打破学科壁垒 成立人工智能教育学部
- 人生是一条奔腾不息的河流
- 加强自身建设 塑造过硬队伍
- 水中硫代硫酸盐溶液标准物质:助力水质检测与分析
- 《佛羅里達變形記》:從鬼地方到仙界淨土,一個人若不能做自己,終究會變形
- 注意!冷空气又来袭,儿童防病有妙招
- 全国打击侵权假冒工作电视电话会议召开
- 搜索
-
- 友情链接
-