当前位置:首页 > 时尚

响应面法优化绿豆抗氧化肽的制备工艺(二)

(2)绿豆多肽抗氧化性与酶浓度的面法关系

参照于慧等人的方法进行DPPH自由基清除率的测定。将2mL一定浓度的优化艺绿豆多肽溶液和2mL的0.12mm01·L-1DPPH溶液进行混合,避光于25℃条件下反应30min,绿豆取出后于517nm波长下进行吸光值的抗氧测定,此时吸光度值记录为Ai;将上述过程中的化肽2mLDPPH溶液用无水乙醇取代,然后与2mL绿豆多肽溶液进行反应,备工此条件下测定吸光值记录为Aj,面法将2mL无水乙醇与2mLDPPH溶液反应的优化艺条件作为空白组,此时记录吸光值为Ao。绿豆结果如图2所示。抗氧

b1

由图2可知,化肽当酶浓度低于6%时,备工DPPH清除率随着酶浓度的面法增加而增大,当酶浓度超过6%时,优化艺DPPH清除率随着酶浓度的绿豆升高而降低。整体呈现先上升后下降的原因在于随着酶浓度的升高,有效酶浓度逐渐加大。当底物的浓度维持不变,有效酶浓度逐渐增多,从而起到抑制作用,使酶水解的不彻底,故水解得到的抗氧化肽减少,进而导致DPPH清除率降低。

(3)绿豆多肽抗氧化性与pH的关系

本实验在于研究酶法对绿豆蛋白水解的抗氧化肽的工艺优化,故以DPPH为指标,选择酶解时间、酶解温度、酶添加量以及pH为因素进行单因素实验。改变反应pH,结果见3所示。
 

b2

由上图可知,当pH在7.0~9.0时,DPPH的清除率随着pH的增大逐渐增大,当pH为9.00时,DPPH清除率达到最大值,为43.89%。当pH超过9.0时,DPPH清除率逐渐减小。这是因为蛋白酶只有在一定的pH区间内具有较高的活性,当蛋白酶处于过酸或过碱的条件下时蛋白酶的结构会被破坏,导致部分蛋白无法完全水解,疏水基团未完全暴露,使得生成肽的抗氧化涪陛降低。

(4)绿豆多肽抗氧化性与酶解时间的关系

通过单因素实验的结果,可以筛选出各因素的三个水平。所以在此基础之上,应用统计分析软件建立4因素3水平的Box—Behnken模型,进行回应面优化设计。改变酶解时间结果见4所示。

b3

二、结果与讨论

1、单因素实验结果

(1)绿豆多肽抗氧化性与酶解温度的关系

将绿豆蛋白配置成一定浓度的溶液,水浴加热至100℃进行15min均质处理。待溶液冷却至酶解最适温度,水浴保温,向溶液中加入0.5mol/L的NaOH调节其pH,酶解一段时间后100℃水浴灭活10min,室温下离心(4000r/min,20min),将上清液冻干后保存。结果如图l所示。

b4

由图1可知,当酶解温度低于50℃,DPPH清除率与温度成正比,当温度超过50℃时,DPPH清除率开始下降。这是因为蛋白酶对稳定的要求较高,温度过低会影响酶解的反应速度,使酶解反应不彻底,从而影响抗氧化肽的抗氧化效果。而温度过高则会影响蛋白酶的活性,使蛋白酶的活性降低,无法使蛋白水解成具有抗氧化性的小分子肽段,从而使DPPH清除率降低。

(2)绿豆多肽抗氧化性与酶浓度的关系

将2mL一定浓度的绿豆多肽溶液和2mL的0.12mm01·L-1DPPH溶液进行混合,避光于25℃条件下反应30min,取出后于517nm波长下进行吸光值的测定,此时吸光度值记录为Ai;将上述过程中的2mLDPPH溶液用无水乙醇取代,然后与2mL绿豆多肽溶液进行反应,此条件下测定吸光值记录为Aj,将2mL无水乙醇与2mLDPPH溶液反应的条件作为空白组,此时记录吸光值为Ao。结果如图2所示。

b5

由图2可知,当酶浓度低于6%时,DPPH清除率随着酶浓度的增加而增大,当酶浓度超过6%时,DPPH清除率随着酶浓度的升高而降低。整体呈现先上升后下降的原因在于随着酶浓度的升高,有效酶浓度逐渐加大。当底物的浓度维持不变,有效酶浓度逐渐增多,从而起到抑制作用,使酶水解的不彻底,故水解得到的抗氧化肽减少,进而导致DPPH清除率降低。

(3)绿豆多肽抗氧化性与pH的关系

本实验在于研究酶法对绿豆蛋白水解的抗氧化肽的工艺优化,故以DPPH为指标,选择酶解时间、酶解温度、酶添加量以及pH为因素进行单因素实验。

实验条件进行实验,改变反应pH,结果见3所示。

b6

由上图可知,当pH在7.0~9.0时,DPPH的清除率随着pH的增大逐渐增大,当pH为9.00时,DPPH清除率达到最大值,为43.89%。当pH超过9.0时,DPPH清除率逐渐减小。这是因为蛋白酶只有在一定的pH区间内具有较高的活性,当蛋白酶处于过酸或过碱的条件下时蛋白酶的结构会被破坏,导致部分蛋白无法完全水解,疏水基团未完全暴露,使得生成肽的抗氧化涪陛降低。

声明:本文所用图片、文字来源《中国食品添加剂》,版权归原作者所有。如涉及作品内容、版权等问题,请与本网联系

相关链接:蛋白酶乙醇绿豆

分享到:

京ICP备19007577号-5