MIMOSA 用于分子优化的多约束分子采样
为了发现新药,设计新分子很重要。采样分子优化是用于从输入分子中寻找具有改善药物特性的分子的尝试。arXiv.org上的分优一篇最新论文提出了一种基于采样的策略来优化分子的多个特性。 名为MultI约束分子扩增(MIMOSA)的多约框架使用输入分子作为初始猜测。然后,束分在分子拓扑结构和子结构类型预测(子结构可以是采样原子或环)上训练了两个图神经网络。通过添加,用于替换或删除子结构来生成新分子。分优 马尔可夫链蒙特卡罗方法用于选择有希望的多约候选者用于下一次迭代。在优化溶解度和生物活性时,束分MIMOSA的采样分子优化性能超过了几个最先进的基准。 分子优化是加速药物发现的基本任务,其目标是生成新的有效分子,该分子在保持与输入分子相似性的同时,最大化多种药物的特性。现有的生成模型和强化学习方法取得了初步的成功,但是在同时优化多种药物特性方面仍然面临困难。为了解决这些挑战,我们提出了多重约束分子简化(MIMOSA)方法,这是一种使用输入分子作为初始猜测并从目标分布中采样分子的采样框架。MIMOSA首先为分子拓扑和子结构类型预测预训练两个属性不可知图神经网络(GNN),其中子结构可以是原子或单环。对于每次迭代,MIMOSA使用GNN的预测,并采用三种基本的子结构操作(添加,替换,删除)来生成新分子和相关权重。权重可以编码多个约束,包括相似性和药物特性约束,然后我们选择有希望的分子进行下一次迭代。MIMOSA可以灵活编码多个属性和相似性约束,并可以有效地生成满足各种属性约束的新分子,并且就成功率而言,相对于最佳基准可以实现高达49.6%的相对改进。MIMOSA 用于分子优化的用于多约束分子采样
桑琴蓉导读 为了发现新药,设计新分子很重要。分优分子优化是多约从输入分子中寻找具有改善药物特性的分子的尝试。arXiv org上的束分一篇最新论文提出了一种基于采
-
上一篇
-
下一篇
- 最近发表
- 随机阅读
-
- 保护知识产权 激发创新活力
- 低温等离子设备可能导致更高效的发动机
- 丰田汽车正在大规模进攻产品
- 谷歌结束GSuite旧版免费版
- 天长法院开展春节走访慰问活动_
- 酷派n900c怎么样(酷派n900c如何取消天气预报)
- 最新分析揭示了海洋热浪将在哪些地方加速最快
- 三星sim卡号码未知(三星F488为什么号码存入SIM卡就找不到了呢)
- 山西永聚煤业发生火灾,已致11人遇难
- 三星电视ua55ks7300(三星UA49KS7300电视支持3D功能吗)
- 什么是科创板股票上市时间(什么是科创板股票)
- 联想黄金斗士a8wifi怎么设置(联想黄金斗士A8采用是什么材质边框它的机身厚度是多少)
- 浙江市场监管部门将举办开放月系列活动
- 跟大家科普下雷克萨斯LC500h性能测试
- 微信提现怎么能不付手续费(微信提现免费方法是什么)
- 宝马已经发布了重生轿跑车的官方图片
- 北京市市场监管局、北京市消协联合发布消费提示:拒绝过度包装和“天价”月饼
- 原来网红直播能赚这么多(网红直播靠什么赚钱)
- 新款美的冰箱bcd565质量怎样(美的BCD
- 光学成像进入亚纳米时代
- 搜索
-
- 友情链接
-